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ABSTRACT 
We describe a novel approach for estimating the pitch and 
yaw of fingers relative to a touchscreen’s surface, offering 
two additional, analog degrees of freedom for interactive 
functions. Further, we show that our approach can be 
achieved on off-the-shelf consumer touchscreen devices: a 
smartphone and smartwatch. We validate our technique 
though a user study on both devices and conclude with 
several demo applications that illustrate the value and im-
mediate feasibility of our approach. 
Author Keywords 
Touchscreen input; mobile devices; rich touch; capacitive 
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ACM Classification Keywords 
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INTRODUCTION 
Today’s touch interfaces are primarily driven by the 2D 
location of touch events. As we describe in Related Work, 
there are many other dimensions of touch that can be cap-
tured and utilized interactively. By increasing the richness 
of touch input, users can do more in the same small space, 
potentially enabling richer applications. In this work, we 
describe a new method that estimates a finger’s angle rela-
tive to the screen. The angular vector is described using two 
angles – altitude and azimuth – more colloquially referred 
to as pitch and yaw. Our approach works in tandem with 
conventional multitouch finger tracking, offering two addi-
tional analog degrees of freedom for a single touch point.  

In this work, we present a new algorithm for simultaneously 
estimating finger pitch and yaw across a wide range of 
poses, from flat to perpendicular. Uniquely, it uses only data 
provided by commodity, off-the-shelf touch devices, requir-
ing no additional hardware or sensors. We prototyped our 
solution on two platforms – a smartphone and a smartwatch 
– each fully self-contained and operating in real-time. We 
quantified the accuracy of our technique through a user 
study, and explored the feasibility of our approach through 
example applications and interactions (see Video Figure).  

RELATED WORK 
There has been significant research into enhancing interac-
tion on touch devices. One approach is to use conventional 
touch data in combination with spatial or temporal sequenc-
es, for example, tap-and-hold and multi-finger chording 
gestures [2,11]. More experimental are efforts that capture 
e.g., pressure [12], shear forces [8], shape of the hands [4], 
rolling motions of stationary fingers [14], and what part of 
the finger touched the screen [7]. 

In addition to X/Y finger tracking, most modern touch-
screens fit an ellipse to finger contact areas, obtaining el-
lipse axes and orientation [1]. The ellipse size is often used 
as a proxy for “pressure”, and can also trigger different 
interaction functions via thresholds [3]. Ellipse orientation 
is similar to yaw, though true finger direction is ambiguous 
(orientation is not directional, thus offering two possible 
vectors). More importantly, as we will show, the ellipse 
orientation varies with finger pitch. Thus, prior work using 
ellipse orientation for yaw (e.g., [16,17]) required fingers to 
lie nearly flat on the screen surface. We improve upon these 
results (see Video Figure, where yaw is tracked even when 
fingers are perpendicular), and further add finger pitch 
tracking, which no touchscreens report today. 

It is important to note that, while prior systems have 
achieved pitch and yaw tracking, all use special hardware 
that is impractical for mobile devices. For example, Point-
Pose [10] used a depth camera mounted obliquely to the 
touchscreen to capture finger “rotation and tilt”. Similarly, 
KinectTouch [5] also uses a depth camera, but it is mounted 
above the display. Z-Touch [15] uses a series of multiplexed 
infrared line lasers to create a shallow-field depth sensing 
touchscreen, capable of recovering finger angle. Using a 
commercial-grade fingerprint scanner, Holz and Baudisch 
[9] were able to estimate pitch and yaw based on the finger-
print patch that was visible, which was used to improve 

     
Figure 1. Left: A ship is piloted through 3D space using  
the finger’s vector. Right: 16x28 capacitive image from  

the smartphone’s touchscreen. 
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targeting accuracy. Zaliva [18] uses neural networks to 
estimate finger pose, though no hardware or results are 
described. Finally, and most similar to our work, is Angle-
Pose [13], which used a 4x6 grid of capacitance-to-ground 
sensing electrodes (offering high SNR) and a particle filter 
to estimate a finger’s 3D pose. This setup is used to evaluate 
how pose information can improve 2D targeting accuracy, 
but the pitch/yaw estimates themselves were not evaluated.  

In addition to being the first approach that can run on com-
modity devices, we are also the first to consider how 
pitch/yaw can be valuable at smartwatch scales, and also 
evaluate our approach’s performance. Further, we bring 
new interactions to light through our example applications. 

IMPLEMENTATION 
Projected capacitive sensing is the most pervasive touch-
screen technology today. It works by sensing disturbances 
in a projected electric field caused by a proximate capaci-
tive object (e.g., a fleshy finger). Field strength diminishes 
significantly with increasing distance. However, important-
ly, the sensitivity is not zero - nearby finger parts will still 
produce weak signals. This produces a characteristic “com-
et” artifact for non-perpendicular fingers (Figures 1 and 2). 

More specifically, our implementation uses the capacitive 
image (Figures 1 and 2, right) provided by the touchscreen. 
Put simply, this is the capacitance measured at each point of 
a touch sensor’s capacitive grid; the data is used internally 
by the touchscreen controller to detect touch events. The 
capacitive image is also provided as a debugging feature by 
many touchscreen controllers. We gained access to the 
capacitive image on our proof-of-concept devices (both of 
which run Android) by modifying the Linux kernel. Of 
note, although the capacitive image is not directly accessi-
ble in Apple iOS and Windows Phone, the underlying 
hardware almost certainly supports it.  

Proof-of-Concept Platforms 
We selected two popular devices to represent smartphone 
and smartwatch form factors. For the phone, we chose a 
Samsung Galaxy S4 (Figure 1), which features a 16x28 
capacitive touch grid over top of a 5.0” 1080x1920 pixel 
screen. On this device, we can poll the capacitive image 25 
times per second. For the smartwatch, we chose an LG ‘G’ 
smartwatch (Figure 2), which has an 8x8 capacitive grid on 
top of a 1.65” 280x280 pixel screen. Due to the smaller 
image size, we can poll the capacitive image at 60 FPS. 

Feature Extraction 
We use the direction and magnitude of the “comet” shape to 
estimate the pitch and yaw of a finger. Starting from each 
identified touch point, we flood-fill within the capacitive 
image to find the set of non-zero pixels sensing the finger B 
(the touch blob). We discard all grid points that have a ca-
pacitance delta (compared with background) below a noise 
threshold (3 pF in our implementation). 

For each remaining point in the touch blob, let !   and !   
denote its position and let !   denote the capacitance devia-
tion at that point. We derive seven datasets: 

- The power-transformed datasets !   
!!!"# = %, ', (# %, ', ( ∈ *}   for i = 0, 1, 2 

- The thresholded power-transformed datasets 
!" = $, &, '" $, &, ' ∈ ), ' ≥ 30}   for i = 0, 1, 2 

- The log-transformed dataset!
! = #, %, ln ( #, %, ( ∈ *}  

Note that !" = $  . We then fit an 
ellipsoid to each dataset by com-
puting the centroid !, #    where: 
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#$,&,'
, ( = (#$,&,'
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and the central image moments 
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From these moments, we com-
pute the ellipsoid orientation: 

! = # 12 tan
#) 2*))
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and the eigenvalues: ! ± = $ %& + $ &% ± 4 $ )) + ($ %& +$ &% )%
2  

 

and finally the ellipsoid’s eccentricity:    ! = 1 − %& %'  

We combine these parameters with the distance and angle 
between the touch point and the ellipsoid centroid to obtain 
a set of 6 features for each of our 7 datasets. We use these 
42 features to compute the pitch and yaw.  

Pitch Estimation 
The electric field strength decreases as the square of the 
distance, reducing the measured capacitance. Due to the 
differing dielectric constants of glass and air, the decrease 
does not perfectly fit an inverse-square law. Thus, to pro-
duce reliable estimates of finger pitch, we used Weka [6] to 
train a Gaussian process regression that takes our 42 fea-
tures as input and produces an estimate of the pitch angle. 

Yaw Estimation 
When a user’s finger is low to the screen, we see the charac-
teristic “comet” shape, in which the major axis of the ellip-
soid of the sensed touch pixels extends parallel to the fin-
ger’s yaw angle (Figure 3, left two panels). However, when 
the user’s finger is sufficiently vertical (pitches near 90º), 
the fingertip’s contact area with the screen forms a small, 
flattened ellipsoid, with a major axis perpendicular to the 
finger’s yaw angle (Figure 3, far right). In between, for 
angles between 45º and 60º, the ellipsoid is nearly a perfect 
circle (Figure 3, center right), allowing for accurate pitch, 

       
Figure 2. Left: Yaw controlling volume level. Right: 8x8 

capacitive image from the smartwatch’s touchscreen. 

 



 

 

but poor yaw estimation. To account for these differences, 
we implemented a simple heuristic: the yaw angle is simply 
the orientation of the S1 ellipsoid, with a 90º correction 
applied if the pitch exceeds 50º. 

USER STUDY 
Prior to running our study, the three authors used the proce-
dure described below to collect data, which was used to 
train the pitch regression model. Thus, the study (purposely) 
contains no per-user training or calibration. Also, pitch and 
yaw estimates were computed live, for a real time result 
(i.e., no post hoc corrections or algorithm tweaks).  

We recruited 10 participants (2 female, mean age 35.2) to 
participate in a 20-minute user study. Participants were 
asked to replicate a series of pitch and yaw positions. Spe-
cifically, we tested 7 finger pitches from 0° (flat on the 
screen) to 90° (perpendicular) in 15° increments, and tested 
9 finger yaw from -60° to +60° in 15° increments (a range 
we found comfortable to replicate in piloting). Each of these 
63 combinations was tested on both our phone and watch 
prototypes. For each combination of device and pitch angle 
(randomized), users performed all yaw angles in sequence 
from -60 to 60 to streamline collection. 

In each trial, users placed their fingertip in the center of the 
display. The requested yaw was displayed on screen using 
an arrow. However, we found no reliable way to illustrate a 
requested pitch. In response, we laser-cut plastic wedges for 
all of our tested angles. Participants placed the appropriate 
wedge under their finger to establish the correct finger 
pitch. Once satisfied, the participant removed the wedge (to 
avoid capacitive interference) and then the experimenter 
triggered the data collection function.  

Two participants had long nails, which precluded the 
touchscreen from detecting their input at 90º pitches. This 
inability to sense is not related to our method, but rather the 
touchscreen hardware and sensitivity settings. Minus these 

two participants’ 90° pitch blocks, we obtained 1224 
pitch/yaw trials in total. There were no significant perfor-
mance differences between users. 

RESULTS 
As seen by the relatively flat lines in Figure 4 left, the angu-
lar accuracy of both pitch and yaw across the full range of 
yaws we tested varies little. This is also true of pitch when 
analyzed across the full range of pitches (Figure 4, right, 
solid lines). However, yaw accuracy varies significantly 
with changing pitch, as seen by the “hump” in the dashed 
lines in Figure 4 right. This is due to the appearance of 
fingers at intermediate pitches (around 45°) as circular 
patches on the capacitive image (Figure 3). This circular 
shape is useful in inferring that the finger is at an intermedi-
ate pitch, leading to high pitch accuracies. However, it pro-
vides little data for inferring yaw, and as such, error is high 
(Figure 4, right, dashed lines). 

The smartphone generally had superior accuracy to the 
smartwatch. We believe this was chiefly due to the larger 
touchscreen better capturing the full extent of fingers’ ca-
pacitive signal (i.e., useful data simply extends off the 
smartwatch screen, as seen in Figure 2, right), The phone 
had a mean angular pitch error of 9.7° (SD=8.9°), while the 
watch had 14.5° (SD=12.6°). Mean angular yaw error was 
26.8° for the phone and 31.7° for the watch. However, as 
noted previously, estimating yaw when pitches are around 
50° is near impossible, leading to misleading averages, so 
the latter averages can be misleading. If we look only at 
mean angular yaw error for pitches 30° or less, the phone 
and watch achieve 10.6° (SD=18.9°) and 13.1° (SD=20.1°) 
mean angular yaw error respectively. Similar results are 
found when the finger is mostly perpendicular.   

EXAMPLE APPLICATIONS 
Holz and Baudisch [9] found that finger pitch systematically 
affected targeting accuracy, and note that if pitch was 
known, targeting accuracy could be significantly increased. 
Our pitch estimation approach could be readily deployed 
onto today’s devices (e.g., a software update) to enable such 
accuracy gains. We also believe pitch and yaw are also 
exciting first-class input dimensions, used to trigger interac-
tive functionality directly. This is especially true on smart-
watches, where small screens make spatial gestures (e.g., 
pigtails) and multi-finger chording cumbersome. To more 
concretely demonstrate these interactive possibilities, we 
created several demo applications (see also Video Figure).  

 
Figure 3. A finger at varying pitches, but constant yaw 
(0°). Note how the Si ellipsoids vary; in particular, how 
they are vertically elongated below 45°, near circular at 

45°, and horizontally elongated above 45°. 
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Figure 4. Accuracy of pitch (solid lines) and yaw (dashed lines) for smartphone (blue lines) and smartwatch (orange lines)  

prototypes. Summarized here is angular accuracy with respect to the range of yaws (left) and pitches (right) evaluated. 



 

 

Twist to Set Value  
Setting analog values on contemporary touch interfaces 
generally means manipulating (through finger translation) a 
small slider or “spinner” widget. By tracking yaw, “twist” 
sensitive controls (demonstrated in [16,17] using orienta-
tion) can be created, which provide relative or absolute, in-
place, analog input. As a demo, we created a volume control 
for our smartwatch (Figure 2). This interaction could also be 
used to set a kitchen timer, modify screen brightness, aid in 
color selection, and other analog manipulation tasks.  
Pan and Zoom  
Today’s smartwatch interfaces generally lack mapping 
applications that can pan and zoom. With such limited 
screen space, two-finger pinch to zoom is cumbersome; for 
example, the Apple Watch instead moves zooming func-
tionality to a mechanical thumb wheel. With pitch and yaw 
tracking, users can translate the map with one finger pan-
ning and zoom with one-finger twists (Figure 5, left). 
Pan and Rotate 
We also created a photo album viewer for our smartwatch 
prototype. Photos can be navigated with left and right 
swipes, while relative pitch movement controls the image 
crop. In a direct manipulation manner, users can twist the 
image with a single finger to rotate it (Figure 5, center). 
3D Manipulation 
Pitch and yaw lends itself well to 3D object manipulation. 
We created a demo where users can rotate an object on all 
three rotational axes without translating the finger (Figure 
5, right). Relative pitch motions along the horizontal and 
vertical axes control rotation about the Y- and X-axis re-
spectively. Yaw naturally controls rotation about the Z-axis. 
Vector into 3D space 
In contemporary touch interfaces, a fingertip pressed against 
a screen is thought of as a point on a 2D plane. However, 
thinking more holistically about the entire finger, it is also a 
vector pointing into 3D space. As a demonstration of this, 
we created a simple game: a spaceship is rendered on the tip 
of the finger and tracks with the finger’s 3D pointing direc-
tion; the goal is to shoot and avoid asteroids (Figure 1). 

CONCLUSIONS AND FUTURE WORK 
In this work, we described and evaluated a new method of 
tracking finger angle using unmodified off-the-shelf 
touchscreens. We provided a number of example applica-
tions to demonstrate interactions made possible using finger 
angle information. In the future, hover-sensing touchscreens 
could be used to further extend sensing above the display 

plane, enabling improved accuracy across a wider range of 
pitch angles, while future improvements in touchscreen 
accuracy and sensor density could improve angle estima-
tions and enable more fine-grained interactions. 
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Figure 5. Left: map panning and zooming. Center: pan 

and rotate images. Right: 3D Object manipulation 


