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ABSTRACT 
At present, touchscreens can differentiate multiple points of 
contact, but not who is touching the device. In this work, 
we consider how the electrical properties of humans and 
their attire can be used to support user differentiation on 
touchscreens. We propse a novel sensing approach based on 
Swept Frequency Capacitive Sensing, which measures the 
impedance of a user to the environment (i.e., ground) across 
a range of AC frequencies. Different people have different 
bone densities and muscle mass, wear different footwear, 
and so on. This, in turn, yields different impedance profiles, 
which allows for touch events, including multitouch ges-
tures, to be attributed to a particular user. This has many 
interesting implications for interactive design. We describe 
and evaluate our sensing approach, demonstrating that the 
technique has considerable promise. We also discuss limita-
tions, how these might be overcome, and next steps. 
ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces - Graphical user interfaces; 
Input devices and strategies. 
General terms: Human Factors, Design. 
Keywords: User identification; ID; login; collaborative 
multi-user interaction; swept frequency capacitive sensing; 
SFCS; Touché; touchscreens; finger input; gestures. 

INTRODUCTION 
Touch interaction is pervasive, especially on mobile devic-
es. In a typical touch-sensitive interface, applications re-
ceive touch coordinates for each finger, and possibly con-
tact ellipsoids as well. However, there is usually no notion 
as to who is touching – a valuable contextual cue, which 
could enable a wide range of exciting collaborative and 
multiplayer interactions [12,19,25,28,30]. 
There are two basic classes of touch-centric computing that 
could be enhanced with user identification and tracking. 
Foremost are large touchscreens, situated on desktops, 
mounted on walls, or placed horizontally, such as interac-

tive tabletops [20]. These are sufficiently large to accom-
modate multiple users interacting simultaneously. Second 
are handheld mobile devices. Their small size and weight 
allows for them to be easily passed around among multiple 
users, enabling asynchronous co-located collaboration [16]. 
Tablet devices occupy the middle ground: portable enough 
to be easily shared among multiple users, while also provid-
ing sufficient surface area for two or more people to inter-
act simultaneously. 
In this paper we consider how the electrical properties of 
users’ bodies can be used for differentiation – the ability to 
tell users apart, but not necessarily uniquely identify them. 
The outcome of our explorations is a promising, novel sens-
ing approach based on Swept Frequency Capacitive Sens-
ing (SFCS) [26]. This approach, which we call Capacitive 
Fingerprinting, allows touchscreens, or other touch sensi-
tive devices, to not only report finger touch locations, but 
also identify to which user that finger belongs. Our tech-
nique supports single finger touches, multitouch finger ges-
tures (e.g., two-finger pinch), bi-manual manipulations [5], 
and shape contacts [6], such as a palm press. Importantly, 
our technique requires no user instrumentation – they simp-
ly use their fingers as they would on a conventional touch-
screen. Further, our technique could be made mobile and 
enhance a broad variety of mobile devices and applications. 
Our experiments show the approach is feasible. In a con-
trolled lab study, touches from pairs of users were differen-
tiated with an accuracy of 96 percent. Put simply, four 
touches in 100 were incorrectly attributed to the other user.  
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Figure 1. Example two-player “Whac-A-Mole” game. 
Red highlights indicate user one hits; green for user 
two. Individual score is kept and shown at top of screen. 



 

 

RELATED APPROACHES 
User identification has implications in many application 
domains, including security, personalization, and group-
ware. The fundamental goal of user identification is to un-
derstand who is controlling the input at any given moment 
and adjust interaction or functionality accordingly. At-
tempts to support co-located multi-user interaction on 
shared displays goes back to at least the late 1980’s, with 
systems such as Boardnoter [29] and Commune [3]. The 
conceptual and social underpinnings of Single Display 
Groupware have been extensively researched by Stewart, 
Bederson, Gutwin and others (see e.g., [12,30]). More re-
cently, there have been efforts to develop toolkits to facili-
tate “identity enabled” applications [19,23,25,28].  
There are significant technical challenges in developing and 
deploying technologies for user identification, particularly 
on touchscreens. Foremost, and perhaps most challenging, 
is that the best techniques avoid instrumenting the user. 
Further, there should be minimal or no instrumentation of 
the environment, as external infrastructure is costly and 
prohibits mobility. Furthermore, the technique must be fast 
and robust, identifying a large number of users both se-
quentially and simultaneously. Additionally, it should be 
inexpensive, easily deployable, sufficiently compact, and 
have low power requirements, thus making integration into 
mobile devices feasible. Currently, we are not aware of any 
system that satisfies all of these requirements.  
In attempting to answer this challenge, there has been sig-
nificant effort put forth to develop technical solutions that 
can support user identification on touchscreens. One ap-
proach is to not uniquely identify each user per se, but ra-
ther distinguish that there are multiple users operating at the 
same time. For example, in Medusa [1], the presence of 
multiple users can be inferred by proximity sensing around 
the periphery of an augmented table. Touches to the surface 
can be attributed to a particular user by using arm orienta-
tion sensed by an array of proximity sensors on the table 
bezel. If users exit the sensing zone, knowledge of the user 
is lost; upon returning, the user is treated as new. Similarly, 
Dang et al. [8] used finger orientation cues to back-project 
to a user, achieving a similar outcome. In both systems, 
occlusion and users in close proximity (i.e., side by side) 
are problematic. 
Another approach to user identification is to capture identi-
fying features, such that each can be uniquely recognized. 
One option is to instrument the user with an identifying 
item, for example, fiducial markers [19] or infrared-code-
emitting accessories [21,24]. Researchers have also consid-
ered biometric features, such as face [35], hand contour 
[27] and fingerprint analysis [15,31]. MultiToe [2] uses a 
series of down-facing Kinect cameras to segment users’ 
shoes for identification purposes. DiamondTouch [9] and 
DT Controls [10] uniquely ground each user (e.g., through 
a chair or floor mat wired to the sensing electronics). Be-
cause the electrical path is unique to each user, touches on a 
large shared screen can be sensed quickly and reliably. All 

of these techniques require large, static setups and/or in-
strumentation of the user, increasing both cost and com-
plexity, and not permitting truly mobile, ad-hoc interaction.  
Finally, there are several systems that employ uniquely 
identifiable pens, such as in Wacom tablets [32], which use 
electromagnetic resonance sensing to identify several styli, 
which could be attributable to different users. TapSense 
[14] used pens with different tip materials, allowing for pen 
disambiguation through acoustic sensing. Although robust, 
these approaches do not support the highly popular direct 
touch interaction. 

CONTRIBUTION 
The salient distinguishing feature of our user differentiation 
approach is that it allows direct touch interaction without 
requiring instrumentation of either the user or environment 
– sensing electronics are fully contained within the device. 
This important property sets it apart from all previous tech-
niques. Further, our technology is sufficiently compact, 
low-powered and inexpensive to enable integration into 
mobile devices and allow for truly mobile interactions. Ad-
ditionally, user classification occurs in real time; the initial 
“first-touch” calibration takes less than a second. Finally, 
our approach is not sensitive to occlusion, orientation, light-
ing, or other factors that are problematic for computer vi-
sion driven methods. 
At present, Capacitive Fingerprinting also has several 
drawbacks. Foremost, it can differentiate only among a 
small set of concurrent users. Further, users can only touch 
sequentially, not simultaneously. There are additional limi-
tations regarding the persistence of identification. Finally, 
although our experimental results are promising, robustness 
needs to be improved for real world use.  
Nonetheless, this work puts forward a novel and attractive 
approach for user differentiation that has not been proposed 
previously. This paper assesses and confirms the feasibility 
of the approach and expands the toolbox of techniques HCI 
researchers and practitioners can draw upon. Similar to any 
other user identification approach, Capacitive Fingerprint-
ing offers a distinct set of pros and cons. Given that a sen-
sor fusion approach might ultimately prove strongest for 
user identification, we believe that our approach may fill 
important gaps in the feature space used for classification. 
We hope this work will contribute to the ultimate goal of 
robust and unobtrusive technologies for differentiating and 
identifying users in a broad variety of applications. 

CAPACITIVE FINGERPRINTING 
Our approach is based on the fundamental observation that 
every human body has varying levels of bone density, mus-
cle mass, blood volume and a plethora of other biological 
and anatomical factors. Furthermore, users also wear differ-
ent shoes and naturally assume different postures, which 
alters how a user is grounded. As a consequence, the elec-
trical properties of a particular user can be fairly unique, 
like a fingerprint, from which we derive our system’s name. 
Therefore, if one can accurately measure the electrical 



 

 

properties of a user, it should be possible to identify, or at 
least differentiate, the person. 
Humans have a multitude of electrical properties that can be 
measured, such as vital signs (e.g., EKG). In this paper, we 
estimate impedance profiles of users at different frequen-
cies, by using recently proposed SFCS techniques [26]. The 
advantage of SFCS is that it is trivial to instrument devices, 
as only a single electrode and wire are needed. Further-
more, it is inexpensive, and it does not require user to wear 
or hold any additional devices. We are not aware of previ-
ous attempts to explore SFCS for user identification.  
The fundamental physical principle behind Capacitive Fin-
gerprinting is that the path of alternating current (AC) in a 
human body depends on the signal frequency [11]. This is 
because the opposition of body tissues, blood, bones, etc., 
to the flow of electrical current – or body electrical imped-
ance – is also frequency dependent. For example, at 1 kHz 
bone has a resistivity of approximately 45 Ω•m, but at 1 
MHz it’s resistivity increases to ~90 Ω•m (Figure 2) [11]. 
Since the AC signal always flows along the path of least 
impedance, it is theoretically possible to direct the flow of 
the current through various paths inside the user’s body by 
sweeping over a range of frequencies. 
 As the signal flows through the body, the signal amplitude 
and phase change differently at different frequencies. These 
changes can be measured in real time and used to build a 
frequency-to-impedance profile. Different people, by virtue 
of having unique bodies, should exhibit slightly different 
profiles. Although we do not specifically model this rela-
tionship, our fingerprint-based classification approach relies 
on it. 
Importantly, Capacitive Fingerprinting is a non-invasive 
technique – we do not require a special purpose ground 
electrode be coupled to users (as in [9,10]). Instead, we use 
the natural environment as ground (i.e., the floor). This also 
means shoes influence the impedance profile. As shown in 
[2], users’ shoes are also fairly unique and aid poster classi-
fication. 
We should note that impedance measurements of the hu-
man body have been used since the 1970s in medical diag-
nostics, such as measuring fluid composition and BMI 
[11,17] and electro-impedance tomography imaging [7]. 
Despite a long history of such measurements, the correla-

tion between measured body impedance and properties of 
the human body are still not fully understood [11]. Most 
often, just one or two frequencies are used for such meas-
urements and we are not aware of any attempts to apply this 
technique in HCI applications. Capacitive Fingerprinting 
should not be confused with galvanic skin response (GSR), 
which measures the conductivity of the skin (see e.g., 
[18,22] for applications in HCI). 

PROTOTYPE 
We created a proof-of-concept system seen in Figure 1 and 
schematically described in Figure 3. To capture and classify 
impedance profiles among a small set of users, we employ 
Swept Frequency Capacitive Sensing (SFCS), introduced as 
Touché [26]. Beyond the Touché sensor board, our system 
consists of a 6.7” LCD panel, a 6.4” IR touch screen, and 
an Indium Tin Oxide (ITO) coated transparent plastic sheet.  
The Touché sensor board generates a 6.6V peak-to-peak 
sinusoidal wave, ranging in frequency from 1KHz to 
3.5MHz, using 200 steps. This signal is injected into an 
ITO sheet situated on top of the LCD panel. When a user 
touches the ITO sheet, an electrical connection to the Tou-
ché sensor is created (the user is also grounded to the envi-
ronment). The current of the sine wave is significantly low-
er than 0.5 mA, safe for humans and on par with commer-
cially available touchscreens [33]. Impedance profiles are 
sent over USB to a computer approximately 33 times per 
second. Note that our present sensor board does not meas-
ure the true impedance of the body, but rather measures the 
amplitude component. Specifically, it creates a voltage-
divider circuit with a resistor and samples this with an AD 
converter. We leave measurement of the phase component 
to future work. 

 
Figure 3. A cutaway view of the touchscreen layers, which are connected to a Touché sensor board. Here, when a 
user touches the screen; our classifier attributes the touch event to a set of users that have previously logged in. 

 
Figure 2. Mean permittivity and resistivity of  

different tissues (from [11]). 

 



 

 

We first attempted to build our system on top of a capaci-
tive touch input panel. However, we found that the conduc-
tive nature of the ITO sheet interfered with touch sensing. 
Simultaneously, the conductive layers inside capacitive and 
resistive touchscreens interfered with SFCS. This necessi-
tated the use of an electrically passive sensing technology. 
We selected an IR-driven touch panel, though several other 
technologies are applicable (e.g., Surface Wave Acoustic). 
It is important to note, however, that with tighter hardware 
integration it may be possible to use e.g., a projective ca-
pacitive touchscreen for both touch and impedance sensing.  

The final component of our system is a conventional com-
puter running a classification engine. We use a Support 
Vector Machine (SVM) implementation provided by the 
Weka Toolkit [13] (SMO, C=2.0, polynomial kernel, 
e=1.0). We employ the same feature set used successfully 
in [26]. Our setup provides 200-point impedance profiles 33 
times per second. When a user first touches the screen, ten 
impedance profiles are captured, taking approximately 
300ms. Each profile is classified in real time; a majority-
voting scheme is used to decide on the final classification. 
This improves accuracy, as the first 100ms of touch can be 
unstable due to the user not yet making full contact. This 
final classification result is paired with the last touch event. 

EXPERIMENTAL EVALUATION 
The first fundamental question that we aim to answer in this 
paper is: can we use measured electrical properties of a 
user’s body for differentiation? To answer this question, we 
conducted an evaluation that included 11 participants (two 
female, mean age 28.1) recruited from our industrial re-
search lab. Our evaluation consisted of two phases. First, 
we collected data for the purpose of training our classifier. 
The second phase collected independent data for the pur-
pose of evaluating our classifiers. The experiment took ap-
proximately 20 minutes.  

Procedure 
During the training data collection, users were asked to 
touch a single point in the center of the screen for 8 seconds 
while rocking their finger back-and-forth and side-to-side 
(see Video Figure). This helped to capture variability in 

finger pose and pressure that might be naturally encoun-
tered through extended use, but unlikely reflected in a typi-
cal, single touch event. During the touch period, 10 samples 
were collected per second, yielding 80 data points per par-
ticipant. We were also interested in evaluating how the 
technique scaled to other gestures beyond simple finger 
touches. The same procedure was used to collect data for a 
two-finger pinch (using one hand), a bi-modal two-finger 
touch, and resting the palm on the screen. 
Note that we deliberately chose to collect data from a single 
touch (i.e., single point) on the touchscreen, as this best 
simulated a “login button” experience. Although multi-
point collection would yield more data, and potentially 
stronger results, pilot testing suggested that this would be 
impractical for real world use and applications.  
During testing data collection, a 4x4 grid of numbered 
crosshairs was provided as touch targets. Users were asked 
to touch, with a single finger, each crosshair in order. Two 
rounds were completed, yielding 32 touch events per partic-
ipant. In addition, participants performed, in locations of 
their choosing, ten one-handed pinches, ten bi-modal two-
finger touches, and ten palm touches. In total, this process 
provided 62 touch events, using four different gestures, 
distributed over the entire surface of the screen. 
When investigating a new sensing technique, it is beneficial 
to control various experimental factors so as to best isolate 
the innate performance of the technique. Once this has been 
established, it is then interesting to relax various constraints 
to explore the broader feasibility. Following this mantra, 
during the experiment users were asked to stand with both 
feet on the floor, providing a relatively consistent connec-
tion to the floor.  

Pairing Users 
To assess our system’s feasibility, we investigated user 
differentiation accuracy for pairs of users. Instead of run-
ning a small number of pairs live, we used train/test data 
from our 11 participants to simulate 55 pairings (all combi-
nations of participants). For example, in a trial pairing par-
ticipant 1 with participant 2, the system was initialized with 
training data from 1 and 2. The resulting classifier was then 

 
Figure 5. Classification accuracies for all trial participant 
pairings. Classifer was trained using 0.5 seconds of 
finger training data (5 samples per participant). 

 

 
Figure 4. Impact on classification performance by varying 
classifier training data from 0.1 seconds (1 sample per 
participant) to 8 seconds (80 samples per participant). 

 



 

 

fed unlabeled testing data from participants 1 and 2 com-
bined and in a random order. This simulated sequential 
touch events as if the users were co-located. From the per-
spective of the classifier, this was no different than real-
time operation.  

Results 
Looking first at single finger touches, performance using all 
8 seconds of training data yielded an all-pairs average accu-
racy of 97.3% (SD=5.9%). Figure 4 illustrates the classifi-
cation performance with different volumes of training data, 
varying from 0.1 second (1 training sample per participant) 
to 8 seconds (80 training samples per participant). Perfor-
mance significantly plateaus after 0.5 seconds of training 
data (5 training sample per participant), which achieves 
96.4% accuracy (SD=9.0%). Figure 5 shows classification 
accuracies for all user pairings. Of note, two thirds of pair-
ings had 100% differentiation accuracy.  
These findings underscore two key strengths of our ap-
proach. Foremost, the fact the system is able to perform at 
84.5% accuracy (SD=18.9%) with a single training instance 
from each user suggests the feature space we selected is 
highly discriminative between users. Second, 0.5 seconds 
appears to be a sweet spot, in particular, a nice balance be-
tween classification accuracy and training duration. Where-
as an 8-second login sequence would significantly interrupt 
interactive use, 500ms is sufficiently quick to be of minimal 
distraction. Given that our current approach requires users 
to login each time they want the system to differentiate 
them, this interaction has to be extremely lightweight if it is 
to be practical. 
We ran a second, post-hoc simulation that included all ges-
tures: single finger touches, one-handed pinches, bi-modal 
two-finger touches, and palm touches. The goal was not to 
distinguish between different gestures, as demonstrated in 
[26], but rather to distinguish between users performing a 
variety of gestures. Our classifier was trained on 20 sam-
ples per participant (5 samples per gesture), representing 2 
seconds of training data. Our testing data consisted of all 62 
touch events from our testing data collection. Again using 

all 55 simulated participant pairings, average accuracy was 
97.8% (SD=6.9%). This is very similar in performance to 
finger-touch-only performance using 2 seconds of training 
data (both classifiers were trained on 20 samples per partic-
ipant). 
We repeated the latter experiment using a single frequency 
in order to demonstrate the utility of employing a swept 
frequency approach. We used attribute selection to identify 
753.5kHz as the single best frequency at which to differen-
tiate users. It should be noted that in a real world system 
this ideal frequency depends on the set of users and envi-
ronmental conditions, and thus cannot be known a priori – 
thus our estimate is idealized. On average, user differentia-
tion was 87.3% accurate vs. 97.8% when all frequencies 
were used, or roughly six times the error rate. 

EXAMPLE APPLICATIONS 
The second research question that we would like to answer 
in this paper is: what are the real-world implications of this 
technique? To begin to address this question, we designed 
three simple exemplary applications based on Capacitive 
Fingerprinting. These applications demonstrate different 
interaction possibilities if user differentiation was available 
on touchscreens (see also the accompanying Video Figure).  
For example, there are many games, especially for tablets, 
that allow two users to play simultaneously. When individ-
ual scoring or control is needed, interfaces most typically 
have a split view. However, this limits game design possi-
bilities and decreases the available screen real estate for 
each player. Using Capacitive Fingerprinting, it is possible 
for two players to interact in a common game space. To 
demonstrate this, we created a “Whac-A-Mole” game [34], 
seen in Figure 1. Targets appear out of random holes; play-
ers must press these with their fingers before they return 
underground. Each time a player successfully hits a target, 
he gains a point; individual scores are kept for each player 
automatically and transparently for each user. 
In another example, we created a painting application (Fig-
ure 6), where two users can paint with their own selected 
color. For example, User A can select red and paint in red, 

 
Figure 7. Example – sketching application. Each user 
has a different drawing color to attribute edits. An 
“undo” button is provided, allowing users to undo 
strokes from their personal edit history. 

 
Figure 6. Example painting application. Two users 
can select colors from a palette on the left of screen. 
The system records each user’s selection, allowing 
users to paint in a personalized color. 



 

 

while User B can select blue and paint in blue without af-
fecting User A’s selection. This could be trivially extended 
to brush type, thickness, opacity, and similar features. In a 
general sense, Capacitive Fingerprinting ought to allow 
users to operate on the touch interface with personalized 
properties [25]. Further, because applications identify the 
owner of each stroke, it is possible to support individual-
ized undo stacks – a feature we built into a simple sketching 
application (Figure 7).  

LIMITATIONS AND CHALLENGES 
The experimental results suggest that measuring the imped-
ance of users is a promising differentiation approach. How-
ever, our study and exemplary applications brought to light 
several limitations and challenges.  These include: 
Persistence of identification: Calibration seems to be sensi-
tive to changes in the human body over the course of the 
day.  Thus, walking away and returning hours (or certainly 
days) later is not currently possible. We hypothesize that 
environmental factors, such as ambient temperature and 
humidity, as well as biological factors, such as blood pres-
sure and hydration, cause impedance profiles to drift over 
time. This personal change variability can be larger than 
between-person variability. This suggests use scenarios 
where interaction is ad hoc and relatively short, or where 
the precision of recognition is not critical. 
Because of this limitation, we instituted a login procedure 
for all of our example applications. Specifically, when a 
user wants to join a multi-user collocated interaction, he 
must first press and hold a “login button” (see Video Fig-
ure). This triggers the system to capture an impedance pro-
file (of the finger pressing the button) and retrain the classi-
fier. As discussed in the evaluation section, this interaction 
can be completed as quickly as 500ms. 
Ground connection: The electrical properties of the user 
cannot be taken separately from the electrical properties of 
the environment. However, since the environment is typi-
cally the same for co-located users, per-user differences are 
detectable. The system is sensitive to how a user is con-
nected to ground. For example, if a user logs into the sys-
tem while seated and then attempts to use it standing, 
recognition can be poor. By changing the global impedance 
of a user so dramatically, the user variations are often ob-
scured. The user must  re-login so as to register a new im-
pedance profile. Future work is required to study this in 
more detail, as well as to develop possible techniques to 
overcome this limitation.  
Sequential touch: A further limitation is that our system 
currently uses a single electrode, covering the entire touch 
surface. As a consequence, our current prototype can only 
process a single touch at a time (i.e., two users cannot press 
the screen simultaneously and be differentiated). It is likely, 
though not tested, that a mosaic of electrodes, as seen in 
some forms of projective capacitive touchscreens, could be 
used to overcome this by sampling the smaller regions 
which are unlikely to fit two users.  

Robustness: Our experimental results suggest a fairly robust 
system with paired-user accuracies in excess of 96%. How-
ever, we caution that a controlled lab study is not a good 
proxy for real-world use. Our experimental results should 
be viewed as evidence that the underlying technique is valid 
and may be a tenable way forward for supporting instru-
mentation-free, identity-enabled, mobile touchscreen inter-
action – the first technique to achieve this end. This opens 
up the possibility of future work, which we discuss next. 

FUTURE WORK 
Combining Capacitive Fingerprinting with other sensing 
techniques is of great interest. Sensor fusion approaches 
generally aim to merge multiple imperfect techniques to 
achieve a superior outcome. Our approach has a unique set 
of strengths and weaknesses that lend well to this approach. 
We are also interested in exploring adaptive classifiers, 
where the system could continuously collect training data 
from users and integrate changes, including natural drift.  
It may also be possible to identify specific situations where 
the difference between two users is sufficiently dramatic, so 
that login is no longer necessary and a persistent general 
classifier can be used. One example application scenario is 
differentiation between parents and children, or teacher and 
young student, where games and educational experiences 
may be designed according to who is providing input. For 
example, in an educational application a teacher could draw 
a hint to help a student solve a math problem; the hint then 
would fade out after a few seconds, prompting the student 
to complete the problem him or herself.  
Finally, we are also interested in exploring applications of 
Capacitive Fingerprinting in highly controlled environ-
ments or applications where exact user identification is not 
necessary - so called soft biometrics. In-car entertainment 
systems are a prime example. We are also curious as to how 
our approach could be applied to differentiating between 
humans and non-humans (e.g., bags, drinks) in ride systems 
and other applications. 

CONCLUSION 
In this paper we have described how sensing of humans 
electrical properties can be used for interactive user differ-
entiation. We integrated this approach into a small, 
touchscreen device and built three simple demo applica-
tions to highlight some basic uses of user-aware interaction. 
The evaluation of our sensing technique demonstrated that 
the approach holds significant promise. We hope that the 
current research will encourage HCI researchers and practi-
tioners to investigate this interesting and exciting technolo-
gy direction.  
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